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Abstract. Two cosmological models with non-phantom matter having the same expansion of the universe
as phantom cosmologies are constructed. The first model is characterized by the evolving gravitational
“constant” G and a dark energy component with a non-conserved energy-momentum tensor. The second
model includes two interacting components, the dark energy component and the matter component. Closed
form solutions are obtained for the constant values of model parameters and constraints on the parameters
of each model from cosmological observations are outlined. For both models it is explicitly shown how the
components of each model produce the expansion of the universe characteristic of phantom cosmologies,
despite the absence of phantom energy. These findings stress the interpretation of phantom energy as an
effective description of the more complex dynamics of non-phantom matter.

1 Introduction

Complementary cosmological observations of supernovae
of the type Ia (SNIa) [1], cosmic microwave background
radiation (CMBR) [2], large-scale structure (LSS) [3] and
other cosmic phenomena have firmly established the pic-
ture of the accelerated expansion of the contemporary uni-
verse [4]. The present accelerating phase of the expansion
of the universe and its onset at a relatively low redshift
(z ∼ 1) represent one of the most intriguing and most
studied problems in modern cosmology. The majority of
theoretical explanations of this phenomenon invoke a new
component of the universe named dark energy1 with the
equation of state (EOS)

pd = wρd , (1)

where ρd and pd represent dark energy density and pres-
sure, respectively. The most studied theoretical candi-
dates for the role of dark energy are the cosmological
constant (CC) (w = −1) [6–8], and its dynamical vari-
ants such as the renormalization group running CC [9–11],
quintessence (w ≥ −1) [12], tachyon models [13] (w ≥ −1)
and the Chaplygin gas model (w ≥ −1) [14].

Recent analyses of cosmological observations [15–19]
allow, and even favor, a sort of dark energy with a su-
pernegative EOS, i.e. w < −1. This unorthodox type of
dark energy, first introduced in [20], was named phan-
tom energy. Many models of phantom energy appeared
soon [21], addressing both its fundamental implications

a e-mail: shrvoje@thphys.irb.hr
1 There are alternative explanations rooted in brane-world

models which do not require dark energy [5].

and cosmological consequences. One of the most interest-
ing features of phantom energy is certainly the possibility
of the divergence of the scale factor of the universe in fi-
nite time. The expansion of the universe in such a model
of phantom energy leads to the unbounding of all bound
structures, a phenomenon also vividly referred to as “big
rip” [22].

Although phantom energy represents a phenomeno-
logically appealing possibility, the violation of the dom-
inant energy condition (DEC), inherent in phantom en-
ergy models, leads to problems at the microscopic level.
For example, it is possible to describe phantom energy
in terms of the effective scalar field theory with negative
kinetic terms, valid up to some cut-off scale. In such a for-
mulation the vacuum of the theory is no longer stable, i.e.
phantom energy decays. Such theories can still be cosmo-
logically viable if the lifetime of phantom energy surpasses
the age of the universe. This requirement puts stringent
constraints on the parameters of the effective scalar filed
theory, above all on its cut-off scale [23,24]. There still re-
mains a question whether some other viable microscopical
formulation exists.

In such a conflict between favor from the observational
side and disfavor from the theoretical side, phantom en-
ergy models face an interesting alternative: the possibility
that matter which has no phantom characteristics (e.g.
satisfies DEC) produces observational effects attributed to
phantom energy. In this paper we consider two realizations
of this possibility. The first realization given in Sect. 2 is
a model reminiscent of generalized phantom energy [25],
in which we consider a sort of cosmology with a time-
dependent gravitational “constant” G and a dark energy
component with a non-conserved energy-momentum ten-
sor. The second realization is based on the dynamics of
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two interacting cosmological components and is displayed
in Sect. 3.

2 A model with an evolving G

We consider a cosmological model with two components.
The first component, which we call the matter component,
has the equation of state

pm = γ(a)ρm , (2)

where γ(a) ≥ 0, and ρm and pm denote the energy den-
sity and pressure of the first component, respectively. We
assume that the energy-momentum tensor of this compo-
nent is conserved, Tµνm;ν = 0, which leads to a well-known
relation for the scaling of ρm with the scale factor a2:

ρm = ρm,0 e−3
∫ a

a0
(1+γ(a′)) da′

a′ . (3)

The second component, which we call the dark energy
component, satisfies DEC and has the equation of state

pd = η(a)ρd , η(a) ≥ −1 . (4)

Here ρd stands for the energy density and pd denotes the
pressure of the dark energy component. We assume that
the energy-momentum tensor of the dark energy compo-
nent is not conserved, i.e. Tµνd;ν �= 0. Therefore, the param-
eter of EOS (4) does not determine the scaling of ρd with
a. One possible way of harmonizing non-conservation of
Tµνd with the general covariance of the Einstein equation
is the promotion of the gravitational constant G into a
time-dependent function G(t) (see [25] for details)3. G(t)
satisfies a generalized conservation condition

(G(t)Tµν);ν = 0 , (5)

where Tµν = Tµνm +Tµνd . It is important to stress that the
procedure explained above does not represent some trivial
multiplication of the constant G by some function of time
f(t) and multiplication of the total energy-momentum
tensor Tµν by f(t)−1 since the energy-momentum tensor
of the matter component is conserved. The relation (5)
can be expressed as

d(Gρd) + ρmdG+ 3Gρd(1 + η(a))
da
a

= 0 . (6)

This equation determines the dynamics of G in terms of
energy densities and parameters of EOS of the components
of the universe. At this place, it is important to notice that
in the Friedmann equation(

ȧ

a

)2

+
k

a2 =
8π
3
G(ρm + ρd) , (7)

2 The subscript 0 denotes the present epoch throughout this
paper.

3 Many models consider the time-dependent G, such as
the renormalization group running of G [9–11,26], the time-
dependence of G originating from extra dimensions [27] or the
effective G in scalar–tensor theories [28].

the evolutions of both G and the energy densities ρm and
ρd determine the kinematics of the universe, i.e. the func-
tion a(t). The aim of this section is to investigate the possi-
bility that the product G(ρd+ρm) has a component which
grows with the scale factor (i.e. its effective parameter of
EOS is smaller than −1), while the components of the
universe have a non-phantom nature (they satisfy DEC).

To this end, we introduce an assumption of the follow-
ing scaling behavior:

Gρd = G0ρd,0

(
a

a0

)−3(1+w(a))

, (8)

where w(a) < −1. This assumption clearly introduces a
source into the Friedmann equation (7) which is identical
with the source originating from phantom energy with the
parameter of EOS w(a) in a model with constant G.

The evolution equation for G becomes

dG =
3G0ρd,0

ρm,0 exp
(
−3
∫ a
a0

(1 + γ(a′))da′
a′

) ( a

a0

)−3(1+w(a))−1

×
[
a

a0
ln
(
a

a0

)
dw(a) + (w(a) − η(a))d

(
a

a0

)]
. (9)

Generally, it is not possible to solve this equation in closed
form, so further in this section we consider a simplified
model with γ(a) = γ = const, η(a) = η = const and
w(a) = w = const, to gain deeper insight via an analytical
solution which one can obtain in this case. The function
G can now be expressed in terms of a as

G = G0

(
1 − ρd,0

ρm,0

η − w

γ − w

[(
a

a0

)−3(w−γ)
− 1

])
. (10)

Once we have the expression for G, we can give the expres-
sion for the other source term in the Friedmann equation
(the first is given by (8)):

Gρm = G0

(
ρm,0 + ρd,0

η − w

γ − w

)(
a

a0

)−3(1+γ)

−G0ρd,0
η − w

γ − w

(
a

a0

)−3(1+w)

, (11)

while the total source term (the right-hand side of the
Friedmann equation) becomes

G(ρm + ρd) = G0

(
ρm,0 + ρd,0

η − w

γ − w

)(
a

a0

)−3(1+γ)

+G0ρd,0
γ − η

γ − w

(
a

a0

)−3(1+w)

. (12)

Closer inspection of (12) shows that in our cosmological
model the universe evolves as if the quantity G were con-
stant and we had one phantom component with the pa-
rameter of EOS w and one non-phantom component with
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the parameter of EOS γ, both components having con-
served energy-momentum tensors. Therefore, our cosmo-
logical model mimics the behavior of the model with a
non-phantom matter component with the present energy
density ρ̃m,0 = ρm,0 + ρd,0

η−w
γ−w and a phantom compo-

nent with the present energy density ρ̃d,0 = ρd,0
γ−η
γ−w . The

acceleration of the universe in our model is given by

ä

a
=

− 4π
3
G0

[
(1 + 3γ)

(
ρm,0 + ρd,0

η − w

γ − w

)(
a

a0

)−3(1+γ)

+
(

1 + 3η − (1 + 3γ)
η − w

γ − w

)
ρd,0

(
a

a0

)−3(1+w)
]
. (13)

Let us finally consider possible constraints on the pa-
rameters of the model. The assumption of constancy of
all parameters of EOS is probably an oversimplification.
However, for modest variations of some of the parameters
with the scale factor a, one expects that the model given
above represents a good approximation. It is certainly con-
ceivable that for the more realistic parameters w(a), η(a)
and γ(a) one can, at the level of the Friedmann equation,
obtain in our model a sort of dynamics which is identi-
cal with the dynamics in the more general model with
constant G and conserved energy-momentum tensors of
the phantom and non-phantom components. Given many
observational constraints on the past evolution of G [29],
one would expect quite stringent constraints on the differ-
ence η − w, which should be small. This means that this
model could explain the cosmological expansion with w
not much more negative than −1. However, in the general
case of our model, a sort of cosmology where w would dif-
fer from −1 more substantially is certainly not excluded.
The expression (13) for the acceleration of the expansion
of the universe provides another constraint on the param-
eters of the model. Namely, in order to have a transition
from deceleration to acceleration at low redshift (z ∼ 1),
the coefficient 1 + 3η − (1 + 3γ) η−w

γ−w must be negative. In
the case that the difference η−w is small, this requirement
reduces to the standard one, η < −1/3. The requirement
of η − w being small also favors the possibility η = −1,
which is equivalent to the time-dependent cosmological
constant. Models with the time-dependent cosmological
constant and G, studied in [30], represent a specially inter-
esting case. Models with a growing cosmological constant
(and a time-dependent G) [31] exhibit a very peculiar fate
of the universe, leading to the unbounding of all gravita-
tionally bound systems, while leaving non-gravitationally
bound systems unaffected, the so-called “partial rip” sce-
nario.

3 A model with two interacting components

In this section we consider a model with two interacting,
non-phantom components. The first component, the dark

energy component, is described by the equation of state

pd = η(a)ρd , η ≥ −1 , (14)

while the other component, the matter component, is de-
termined by the following equation of state:

pm = γ(a)ρm , γ ≥ 0 . (15)

In this model, the gravitational constant G has no space-
time variation. The interaction of the components is in-
cluded in the model in the following way. We assume that
the energy-momentum tensors of the two separate compo-
nents are not conserved, but the total energy-momentum
tensor Tµν = Tµνm + Tµνd is conserved. In this way, there
exists an exchange of energy and momentum between the
two components. The requirement of the conservation of
the total energy-momentum tensor can be expressed as

dρm +3ρm(1+γ(a))
da
a

= −dρd −3ρd(1+η(a))
da
a
. (16)

What remains to be determined is the specification of
the interaction (energy-momentum exchange) between the
components. The aim of this model is to demonstrate that
this set-up can mimic the expansion of the universe char-
acteristic of phantom cosmologies. Therefore we assume
the following evolution law for the dark energy compo-
nent:

ρd = ρd,0

(
a

a0

)−3(1+w(a))

, (17)

where w(a) < −1, i.e. the dark energy component has
the evolution law characteristic of phantom energy. The
non-phantom dark energy component has a scaling with
a characteristic of phantom energy owing to the inter-
action with the matter component. Equation (16) then
determines the evolution law for the energy density of
the matter component. For general values of the param-
eters of EOS it is not always possible to obtain the so-
lutions in closed form. Therefore, in the remainder of
this section we assume that these parameters are con-
stant, i.e. γ(a) = γ = const, η(a) = η = const and
w(a) = w = const. This particular choice will allow us
to gain insight via closed form solutions. The energy den-
sity of the matter component then becomes

ρm =
(
ρm,0 + ρd,0

η − w

γ − w

)(
a

a0

)−3(1+γ)

−ρd,0
η − w

γ − w

(
a

a0

)−3(1+w)

. (18)

The total energy density, ρ = ρm + ρd, which appears on
the right-hand side of (7), then has the form

ρ =
(
ρm,0 + ρd,0

η − w

γ − w

)(
a

a0

)−3(1+γ)

+
γ − η

γ − w
ρd,0

(
a

a0

)−3(1+w)

. (19)

The acceleration of the expansion of the universe is given
by the expression



526 H. Štefančić: Phantom appearance of non-phantom matter

ä

a
=

− 4π
3
G

[
(1 + 3γ)

(
ρm,0 + ρd,0

η − w

γ − w

)(
a

a0

)−3(1+γ)

+
(

1 + 3η − (1 + 3γ)
η − w

γ − w

)
ρd,0

(
a

a0

)−3(1+w)
]
.(20)

As for the model displayed in Sect. 2, the right-hand side
of the Friedmann equation is the same as in a model with
constant G and two non-interacting components: the first
being the non-phantom component with the present en-
ergy density ρ̃m,0 = ρm,0 + ρd,0

η−w
γ−w and the parameter of

EOS γ, while the second being phantom energy with the
present energy density ρ̃d,0 = γ−η

γ−wρd,0 and the parameter
of EOS w. Equation (18) shows the effects of the inter-
action with the dark energy component on ρm as an ad-
ditional term growing as a−3(1+w). The requirement that
the scaling law of the matter component should not dif-
fer too much from the scaling law dictated by its EOS
(∼ a−3(1+γ)), i.e. that the interaction is not too strong,
leads to the condition that the difference η − w should
be small. In the model with a more general variation of
some of the parameters γ, η or w, it is conceivable that
this constraint would be milder. Again, as in Sect. 2, two
non-phantom components mimic phantom cosmology. The
model can successfully describe the transition from the de-
celerating to the accelerating regime of the expansion of
the universe if the coefficient 1+3η− (1+3γ) η−w

γ−w is neg-
ative. When η is close to w, the afore-mentioned require-
ment reduces to the condition η < −1/3. One especially
interesting variant of the model is the case η = −1. In
this case, the evolving cosmological constant in interac-
tion with the matter component mimics the expansion of
phantom cosmology.

One way of elaborating the model given in this section
would certainly be its formulation in terms of classical
fields. We can model the system of two interacting com-
ponents as a system of two minimally coupled interacting
scalar fields in a cosmological setting. For the Lagrangian
of the interacting system we then take a general form (we
consider only time-dependent scalar fields)

L =
φ̇2

2
+
ψ̇2

2
− V (φ, ψ) , (21)

where φ and ψ denote scalar fields. Given that the total
energy density is ρ = φ̇2

2 + ψ̇2

2 +V (φ, ψ) and the total pres-
sure is p = L, one obtains the following two constraints
on the dynamics of the scalar fields:

φ̇2 + ψ̇2 = (1 + η)ρd + (1 + γ)ρm ,

2V (φ, ψ) = (1 − η)ρd + (1 − γ)ρm . (22)

From (17) and (18) we have obtained ρd and ρm, respec-
tively, as functions of the scale factor a. On the other hand,
from (7) we can determine the function a(t). This makes
the right-hand sides of (22) known functions of time. All
pairs of functions φ and ψ (with a non-trivial potential

V (φ, ψ)) that satisfy (22) can produce the evolution of
the universe as described in the model of this section. This
class of solutions certainly does not exclude more sophis-
ticated (and realistic) field (or microscopic) models.

4 Conclusions

The two models, described in Sects. 2 and 3, have been
constructed to demonstrate that cosmologies without
phantom energy can lead to an expansion of the universe
usually attributed to phantom energy. The first model
is characterized by an evolving gravitational “constant”
G and a dark energy component with a non-conserved
energy-momentum tensor. The second model is based on
two interacting components. Both models yield results for
the cosmological evolution of their components which are
testable against the results of various cosmological obser-
vations. Calculations in this paper have been made with
a specific choice of parameters (e.g. constant parameters
of EOS) which ensures closed form solutions. These solu-
tions facilitate the interpretation of the physical meaning
of the obtained results, but the scope of the models de-
scribed in this paper certainly does not end here. Models
with variable (e.g. dependent on a) parameters γ, η and w
offer much more possibilities (especially in terms of satis-
fying numerous constraints from the past evolution of the
universe) and merit further investigation. The possibility
of mimicking phantom cosmology by a non-phantom one,
certainly does not rule out an appealing and provocative
idea of phantom energy. However, it puts a greater pon-
der on the nature of phantom energy as an effective de-
scription of the more complex dynamics of non-phantom
matter.
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H. Štefančić: Phantom appearance of non-phantom matter 527

7. P.J.E. Peebles, B. Ratra, Rev. Mod. Phys. 75, 559 (2003)
8. T. Padmanabhan, Phys. Rept. 380, 235 (2003)
9. A. Babic, B. Guberina, R. Horvat, H. Stefancic, Phys.

Rev. D 65, 085002 (2002); B. Guberina, R. Horvat, H.
Stefancic, Phys. Rev. D 67, 083001 (2003)

10. I.L. Shapiro, J. Sola, Phys. Lett. B 475, 236 (2000); JHEP
0202, 006 (2002); I.L. Shapiro, J. Sola, C. Espana-Bonet,
P. Ruiz-Lapuente, Phys. Lett. B 574, 149 (2003)

11. A. Bonanno, M. Reuter, Phys. Lett. B 527, 9 (2002);
E. Bentivegna, A. Bonanno, M. Reuter, astro-ph/0303150

12. B. Ratra, P.J.E. Peebles, Phys. Rev. D 37, 3406 (1988);
P.J.E. Peebles, B. Ratra, Astrophys. J. 325, L17 (1988);
C. Wetterich, Nucl. Phys. B 302, 668 (1988); R.R. Cald-
well, R. Dave, P.J. Steinhardt, Phys. Rev. Lett. 80, 1582
(1998); I. Zlatev, L. Wang, P.J. Steinhardt, Phys Rev.
Lett. 82, 896 (1999)

13. A. Sen, JHEP 0204, 048 (2002); 0207, 065 (2002); Mod.
Phys. Lett. A 17, 1797 (2002); T. Padmanabhan, T. Roy
Choudhury, Phys. Rev. D 66, 081301 J.S. Bagla, H.K.
Jassal, T. Padmanabhan, Phys. Rev. D 67, 063504 (2003)

14. A. Yu. Kamenshchik, U. Moschella, V. Pasquier, Phys.
Lett. B 511, 265 (2001); N. Bilic, G.B. Tupper, R.D. Vio-
llier, Phys. Lett. B 535, 17 (2002); M.C. Bento, O. Berto-
lami, A.A. Sen, Phys. Rev. D 66, 043507 (2002)

15. A. Melchiorri, L. Mersini, C.J. Odman, M. Trodden, Phys.
Rev. D 68, 043509 (2003)

16. T. Padmanabhan, T. Roy Choudhury, Mon. Not. Roy. As-
tron. Soc. 344, 823 (2003)

17. T. Roy Choudhury, T. Padmanabhan, astro-ph/0311622
18. J.A.S. Lima, J.V. Cunha, J.S. Alcaniz, Phys. Rev. D 68,

023510 (2003); J.S. Alcaniz, astro-ph/0312424
19. U. Alam, V. Sahni, T.D. Saini, A.A. Starobinsky, astro-

ph/0311364
20. R.R. Caldwell, Phys. Lett. B 545, 23 (2002)
21. C. Armendariz-Picon, T. Damour, V. Mukhanov, Phys.

Lett. B 458, 209 (1999); T. Chiba, T. Okabe, M. Ya-
maguchi, Phys. Rev. D 62, 023511 (2000); V. Faraoni,
Int. J. Mod. Phys. D 11, 471 (2002); B. McInnes, JHEP
0208, 029 (2002); S. Nojiri, S.D. Odintsov, Phys. Lett. B
562, 147 (2003); Phys. Lett B 565, 1 (2003); P. Singh,

M. Sami, N. Dadhich, Phys. Rev. D 68, 023522
(2003); G.W. Gibbons, hep-th/0302199; L.P. Chimento,
R. Lazkoz, gr-qc/0307111; J.G. Hao, X.Z. Li, Phys. Rev.
D 68, 083514 (2003); Y-S. Piao, E. Zhou, Phys. Rev. D
68, 083515 (2003); M.P. Dabrowski, T. Stachowiak, M.
Szydlowski, hep-th/0307128; J.G. Hao, X.Z. Li Phys. Rev.
D 67, 107303 (2003); astro-ph/0309746; V. Faraoni, gr-
qc/0307086; V.B. Johri, astro-ph/0311293; M. Sami, A.
Toporensky, gr-qc/0312009; E. Elizalde, J. Quiroga Hur-
tado, Mod. Phys. Lett. A 19, 29 (2004); E. Elizalde, S.
Nojiri, S.D. Odintsov, hep-th/0405034

22. R.R. Caldwell, M. Kamionkowski, N.N. Weinberg, Phys.
Rev. Lett. 91, 071301 (2003)

23. S.M. Carroll, M. Hoffman, M. Trodden, Phys. Rev. D 68,
023509 (2003)

24. J.M. Cline, S. Jeon, G.D. Moore, hep-ph/0311312
25. H. Stefancic, Phys. Lett. B 586, 5 (2004), astro-

ph/0310904
26. E. Elizalde, S.D. Odintsov, Phys. Lett. B 303, 240 (1993);

B 321, 199 (1994); E. Elizalde, S.D. Odintsov, I.L.
Shapiro, Class. Quant. Grav. 11, 1607 (1994); E. Elizalde,
C. Lousto, S.D. Odintsov, A. Romeo, Phys. Rev. D 52,
2202 (1995)

27. P. Loren-Aguilar, E. Garcia-Berro, J. Isern, Yu.A.
Kubyshin, Class. Quant. Grav. 20, 3885 (2003)

28. See e.g. R. Nagata, T. Chiba, N. Sugiyama, astro-
ph/0311274

29. See e.g. C.J. Copi, A.N. Davis, L.M. Krauss, astro-
ph/0311334

30. O. Bertolami, Nuovo Cim. B 93, 36 (1986); A. Beesham,
Nuovo Cimento B 96, 17 (1986); Int. J. Theor. Phys. 25,
1295 (1986); A-M.M. Abdel-Rahman, Gen. Rel. Grav. 22,
655 (1990); M.S. Berman, Phys. Rev. D 43, 1075 (1991);
Gen. Rel. Grav. 23, 465 (1991); R.F. Sistero, Gen. Rel.
Grav. 32, 1265 (1991); D. Kalligas, P. Wesson, C.W.F.
Everitt, Gen. Rel. Grav. 24, 351 (1992); T. Singh, A.
Beesham, Gen. Rel. Grav. 32, 607 (2000); A.I. Arbab,
A. Beesham, Gen. Rel. Grav. 32, 615 (2000); A.I. Arbab,
Spacetime and Substance 1, 39 (2001); astro-ph/0308068;
J. Ponce de Leon, gr-qc/0305041

31. H. Stefancic, to appear in Phys. Lett. B, astro-ph/0311247


